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Abstract 

The floodplain area is largely influenced by the fluctuation of water level and seasonal change at Cuu Long rivers Delta. In 
the wet season, the delta landform and vegetated areas are covered with water, and vice versa in the dry season. Those land 
cover changes provides significant information required for mitigating the impact of climate change and sea level rise, and 
sustainable development. The achievement of radar systems for detecting wetlands during the wet season is to provide the 
land cover changes corresponding with backscattering coefficient value changes. We used serial ERS-2 data with 35 days 
interval during 1997 – 1998 periods to estimate the areal variation of vegetated area during the annual flood pulse. The 
advantage of this study is that land cover information can be observed from radar data instead of optical data due to weather 
condition, and able to detect the surface condition changes beneath the canopy of vegetation. The purpose of paper aims to 
monitor the vegetated change based on the backscattering coefficient values change while the floodwater level varies. The 
primary results indicate that the backscattering coefficient values decrease when the water level values increase. However, 
the backscattering coefficient values change at the cultivation areas is due to local flooding and faming calendar in 
agriculture. 
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1. Introduction 

Wetlands have great significance to ecosystems, particularly in the tropics where floods occur during the 
wet season (Ben, 2011). The lower Mekong River basin is one of the largest wetland ecosystems in Southeast 
Asia. The main part of this wetland is Cuu Long rivers Delta, which includes nine rivers flowing to the sea (Fig. 
1a). In the wet season, floodwater flows from upper Mekong River basin into Cuu Long rivers Delta because of 
heavy rainfall. Conversely, the slow release of floodwaters from Cuu Long rivers Delta is a very important 
source of water for cultivation during the dry season.  

It is important to understand the flood dynamics of the Cuu Long rivers Delta ecosystem to balance 
economic growth and poverty reduction with ecosystem health in a developing country, Vietnam (Kummu and 
Sarkkula, 2008). The species diversity of animals and plants and their ecology in the Cuu Long rivers floodplain 
depend on potential changes in hydrology (Campbell et al., 2006). Information about the changes in vegetated 
types and soil conditions at the floodplain area due to flooding is important for agriculture, pisciculture, 
sylviculture, and conservation. To monitor land cover changes, the relationships between vegetation types and 
flood dynamics during both dry and wet seasons need to be considered. Although flooding is an annual event in 
the floodplain, the range of flooding greatly varies from year to year. It is not possible to construct a model from 
a digital elevation model and land cover classification model, because the published local digital elevation 
model and land cover classification map are not precise enough nor sufficiently up-to-date to accommodate the 
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annual flooding pattern. However, a time series of remotely sensed data could potentially be used to study 
floodplain vegetation dynamics and the impacts of flooding on local residents.  

Several studies have been performed in the Tonle Sap floodplain area based on both synthetic aperture radar 
(SAR) and optical systems. Wetland ecosystems in the northwestern Tonle Sap basin were mapped and assessed 
with multi-polarization AIRSAR data to produce a map of fourteen land cover classes in (Milne and Tapley, 
2004). Radar systems have been widely used to characterize changes in wetlands due to their weather-
independent imaging capabilities. Furthermore, SAR data are sensitive to biomass, the structure of flooded 
vegetation, and soil moisture (Hess et al., 1995; Bouvet and Toan, 2011; Prakash, 2012). The relationship 
between radar signals and floodplain vegetation has been modeled using backscattering coefficients (Ulaby et 
al., 1990; Wang, 1995). Previous reviews (Hess et al., 1995; Schmullius,1997) have discussed the effects of 
radar parameters such as incidence angle, polarization, and frequency on the detection of flooding beneath a 
forest canopy. Those papers revealed the complexity of the relationships between radar signals and wetlands 
caused by the structure and density of the vegetation, the observation wavelength, and incidence angle. 
Backscattering at the C-band is enhanced in a floodplain due to the double bounce of the radar signal between 
grass or rice and water surfaces beneath the leaves (Kasischke et al., 1997) the double bounce also allows 
accurate measurements of water level (Alsdorf et al., 2000). An incidence angle from 20º to 30º is preferable for 
flooded vegetation studies, because some vegetation types exhibit bright returns that are weaker at higher 
incidence angles (Lang et al., 2008). Martin-Cardona et al., 2010 used Envisat ASAR C-band polarimetric, 
multi-incidence angle and multi-temporal characterization of Doñana wetland for flood extent monitoring. 
These previous studies highlighted the potential of SAR systems to detect flooding and monitor the extent of 
flooding during the rainy season. A major advantage of using SAR data is that it is possible to determine 
changes based on backscattering coefficients.  

Our aim in this paper was to monitor changes in vegetation classes in the Cuu Long rivers floodplain using 
ERS-2 data. We performed backscattering temporal characterization of ERS-2 with VV polarizations to 
determine the extent of flooding in marshes based on the interaction between radar signals and wetland.  

2. Study area and data 

2.1. Study area 

Our study area was the Vinh Long province and a part of Tra Vinh province as denoted by the covered 
ERS-2 SAR data acquired on January 25, 1998 in Fig. 1b. The bright areas correspond to vegetation area located 
in upland areas, whereas the dark areas represent objects in lowland areas such as soil and rocks, grass fields, 
rice paddies, settlements, etc inundated by flooding water. The topographic slope is gentle and includes various 
vegetation types. The topography of this area is shown as a digital terrain map (DTM) in Fig. 2b, and the 
topography generally follows the shape of floodplain. The land cover classes in this floodplain area change 
rapidly according to changes in water level. More than 30 land cover classes are present in the land use map 
(hereafter referred to as “the land use map 2010”) published by General Department of Land Administration, 
MONRE (Fig. 2a). Based on this map and digital terrain model, data for vegetation class was collected to 
account for the effects of water level. First, the habitat location (lowland or upland) of the selected vegetation 
class was considered. Changes in this vegetation class due to fluctuations in water level are very clear because 
water levels in this area change rapidly during the wet season. Lowland vegetations and agricultural crops locate 
in the habitat elevation zone from 0 to 1 m amsl, and in this zone, the tree is easily affect by flooding. The 
second group, located in the uplands (above 1 m amsl), comprises upland vegetation. Flooding affects only 
groups in this area during flood crests. Upland vegetations are strongly affected by floods during which the 
water level reaches the maximal flooding level. Agricultural fields refer mainly to rice paddy fields that are 
located in the margin of the study area. Agricultural fields are influenced not only by water level changes in the 
floodplain, but also by local flooding, crop cycle growth, and other related factors.  
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(a) (b) 

Fig. 1. (a) Map of Mekong Delta with provinces, flood-prone areas, and brackish areas (Mira, 2008);                                                                
(b) ERS-2 SAR data acquired on January 25, 1998 of study area. 

2.2. Experimental Data 

The data used in this study included eleven ERS-2 SAR scenes acquired from December 1997 to December 
1998 (Table 1). All images were observed with a 230 off-nadir angle in ascending mode with VV single 
polarization (20 m resolution) acquired during dry and wet season of year. Surface change conditions during the 
wet season are much more complicated than those in the dry season (Almeia-Filho et al., 2009). ERS-2 SAR 
data can be used to detect changes in a 35-day interval during both dry and wet seasons. We used the time series 
of ERS-2 SAR data to determine backscattering coefficients of land cover classes to assess changes in land 
cover classes caused by flood dynamics.  

Table 1. Eleven ERS-2 SAR acquisition dates and water levels measured at Dai Ngai, Tra Vinh, Can Tho, Cho Lach and My Thuan station. 

No. Date  
(dd mmm.yyyy) 

Water level at 
Dai Ngai (cm) 

Water level at 
Tra Vinh(cm) 

Water level at 
Can Tho (cm) 

Water level at 
Cho Lach (cm) 

Water level at 
My Thuan (cm) 

1 21 Dec.1997 9 5 5 20 32 

2 25 Jan.1998 28 34 34 48 53 

3 01 Mar.1998 29 31 31 48 49 

4 05 Apr.1998 1 1 1 16 21 

5 10 May.1998 -1 0 0 13 17 

6 14 Jun.1998 -4 -5 -5 8 19 

7 19 Jul.1998 -10 -19 -19 7 28 

8 23 Aug.1998 14 2 2 33 58 

9 27 Sep.1998 30 22 22 45 73 

10 01 Nov.1998 30 23 23 47 69 

11 06 Dec.1998 49 48 48 75 92 

2.3. Additional Data 

The water levels at acquired time of ERS-2 data recorded at Dai Ngai, Tra Vinh, Can Tho, Cho Lach, and 
My Thuan station, were measured as above mean sea level in Ha Tien, Vietnam, using a precise levelling from 
Ha Tien to Dai Ngai, realized in 2001 (MRC) (Fig. 2b). The DTM of the Tra Vinh and Vinh Long region (Fig. 
2b) was generated by the MRC Technical Support Division from elevation contours with 1 meter vertical 
intervals of the topographic map at an original scale of 1:40 000. The calculated horizontal accuracy of the 
source data provided by MRC is about 65 m, and the estimated vertical accuracy of the source data is about 1 m.   
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(a) (b) 

Fig. 2. (a) Land use map (Source: General Department of Land Administration, MONRE); (b) DEM and water level stations (Source: MRC) 

3. Methodology 

3.1. ERS-2 SAR processing 

All ERS-2 SAR data provided by the European Space Agency as raw data were processed to generate 
single look complex (SLC) data. To calculate the radar backscattering coefficient sigma nought (σº), the 
following expression was applied to each image pixel (Laur et al., 2004): 
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where 
• N is the number of pixels within the Area Of Interest (AOI) i.e. the group of pixels corresponding to 

the distributed target in the image,  
• i and j are the range and azimuth locations of the pixels within the distributed target containing N 

pixels,  
• DNij is the digital number corresponding to the pixel at location (i,j),  
• α is the average incidence angle within the distributed target,  
• αref is the reference incidence angle, i.e. 23.0 degrees.  

In the present study, the sigma nought in (1) was used to calibrate the radiometric ERS-2 SAR of the Tra 
Vinh and Vinh Long floodplain. Geometric correction determines the accurate location of a pixel in a SAR 
image, i.e. the geodetic latitude and longitude. To perform this correction, the Shuttle Radar Topography 
Mission (SRTM) Digital Elevation Model (DEM) and a higher resolution auxiliary local DTM were used to 
remove terrain effect error, and each pixel was projected to a resolution of 20 m. The backscattering coefficient 
for each land cover type was not homogeneous due to speckle noise. To reduce this noise, a Lee filter method 
with sliding windows (5x5pixels) was applied to produce a mean backscattering coefficient within a 
homogeneous land cover class.  

3.2. Object-oriented classification for land cover classes 

The process of the object-oriented classification can be divided into the following steps: 
• Multi-resolution segmentation, 
• formulation of class hierarchy, 
• decision tree-like classification (classification rules) and 
• classification evaluation. 

The object-oriented classification conducted using eCognition software (Baatz et al., 2004) has previously 
been described (Whiteside and Ahmad, 2004). The process can be split into two steps, segmentation and 
classification. 

Multi-scale segmentation: 
The object-oriented approach first involved the segmentation of image data into objects on two scale levels. 

The subset images were segmented into object primitives or segments using eCognition. The segmentation of 
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the images into object primitives is influenced by three parameters: scale, colour and form (Willhauck et al., 
2000). 

The scale parameter set by the operator is influenced by the heterogeneity of the pixels. The colour 
parameter balances the homogeneity of a segment’s colour with the homogeneity of its shape. The form 
parameter is a balance between the smoothness of a segment’s border and its compactness. The weighting of 
these parameters establishes the homogeneity criterion for the object primitives. A visual inspection of the 
objects resulting from variations in the weightings was used to determine the overall values for the parameter 
weighting at each scale level (Table 2). 

Table 2. The overall values for the parameter weighting at each scale level. 

Scale level Scale parameter Shape factor Compactness Smoothness 

2 10 0.4 0.7 0.3 

1 5 0.2 0.7 0.3 

Classification:  
Sample objects were selected as representative of land cover classes. A total of ten land cover classes for the 

study area were identified based on the structural formation of the vegetation and characteristic water. Class 
rules for the objects were then developed using spectral signatures, shape, location and the contextual 
relationships of the objects. These rules were then used as a basis for classification of the image, DEM and 
water level as shown in Table. 3. Samples for each class were selected from the image objects to act as training 
areas for the classification. Objects were assigned class rules using spectral signatures, shape and contextual 
relationships. The rules were then used as a basis for the fuzzy classification of the data with the most 
probable/likely class being assigned to each object. 

Table 3. Construction of rule set for ERS-2 SAR based on DEM and water level data. 

Land cover class  
Classification rule 

ERS-2 SAR (dB) DEM (m) Water level (cm) 

Water < -13 < 1 > 0 

Vegetation > -10 > 0 - 

Flooded vegetation < -10 and > -13 < 2 and  > 0 <30 and >-20 

4. Results and discussion 

4.1. Backscattering coefficient characteristics of Land cover types 

The backscattering coefficients observed for the ROIs revealed that changes in land cover types were highly 
correlated with changes in water levels as shown in Fig. 3. The vegetations located in the lowland were 
influenced earlier by floods than those in the uplands because of their low elevation - below 1 m amsl. During 
flooding, the surface changed due to the wet conditions. The variation in backscattering coefficients measured 
during both dry and wet seasons clearly accounted for such changes. According to the backscattering coefficient 
variation, the annual variation could be divided into the following two stages (Fig. 3a):  

- The dry season stage (water level ranged below 0.3 m amsl) was characterized by a stable period in terms 
of C-band backscattering. During this period, the surface water in the floodplain gradually started to disappear. 
The backscattering coefficient decreased in range from 4 to 8 dB because the water level dropped to a minimum, 
which in turn resulted in the double bound diminishing to a minimum in the dry season. The distinction among 
backscattering coefficients of vegetation, flooded vegetation and water types was clear.  

- The wet season stage (water level increased above 0.3 m amsl) corresponded to a rapid decrease in the 
backscattering coefficients. Because the water level reached the leaf canopy or fully inundated the vegetation, 
the water surface reflection increased, resulting in a decrease in the total backscatter. The backscattering 
coefficients of lowland grasses and agricultural tree were always the lowest when the water level exceeded their 
height so that lowland vegetation areas were progressively replaced by floodwater surface areas during this 
flood stage, which corresponded to a decrease in the backscattering coefficients. In particular, upland fruit trees 
with the highest trees were not often fully inundated, leading to the highest backscattering coefficients in this 
stage, partially due to double bounce.  
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(a) (b) 

Fig. 3. (a) Water level and backscattering coefficient of vegetation class during year ; (b) Land cover classes area change in the study area. 

The backscattering coefficients of lowland vegetation decreased from -7.6 dB in the dry season to -12.9 dB 
in the wet season. During the dry season, the difference in backscattering coefficients between flooded 
vegetation and vegetation was about 4.2 dB. The maximum backscattering coefficients difference in lowland 
vegetation between the two seasons was about 5.1 dB. This accounts for the different backscattering 
mechanisms observed: double bounce, volume and surface scattering. As the water level increased, 
backscattering decreased in all cases because of specular scattering. However, double bounce increased, 
particularly in the lowland fruit trees, which resulted in a minimal decrease in backscattering coefficients during 
the wet season. In contrast, the increased water level and wet soil contributed to a loss in backscattered radar 
power due to increased specular scattering for lowland vegetations during the wet season. A tree with a thick 
trunk plays an important role in double bounce backscattering when the ground surface is submerged by 
floodwater (Lee et al., 2004). However, the thin trunk of a fruit tree does not contribute much to double bounce 
backscattering. 

Upland vegetation and agricultural areas were located in topographically high regions, above 1 m amsl. The 
land cover changes in these areas were more affected by near-crest flooding. The backscattering coefficients of 
vegetation type also had different patterns of variation during each of the two water level variation stages, as 
shown in Fig. 3. The backscattering coefficient of the upland vegetation was always higher than that of lowland 
vegetation. The maximum and minimum backscattering coefficients of the upland vegetation during the 
observation time were about -7.1 dB and -13.2 dB, respectively. As shown in Fig. 3, the upland vegetations 
were affected by flooding at about 1 m amsl, while lowland vegetations were affected by a flood level of about 
0.3 m amsl. It is worthy to note that the radar backscattering values for upland fruit trees were relatively high 
because of double bounce, even during the peak of a flood. When the water level was below 1 m amsl, the 
grasses in the two areas had different values. This result implies that C-band radar backscattering from a grassy 
area is directly governed by soil water content, while C-band radar backscattering from forests or fruit trees has 
a more complicated pattern when surface water is present due to a more complicated scattering mechanism. The 
agricultural areas showed a very similar pattern of variation to the upland grasses in terms of backscattering 
coefficients for water levels higher than 1 m amsl. During the dry season, the agricultural fields had lower 
backscattering coefficients than the natural grasslands. This can be explained by the difference in biomass 
between these two vegetation types, as shown in Fig. 4. Short vegetation is sensitive to surface conditions 
during the dry season. Cultivation, harvesting, and growth also cause large changes in agricultural areas (Toan et 
al., 1997). Therefore, it is difficult to make a direct comparison between agricultural areas and natural 
grasslands using only backscattering coefficients. All vegetation types except lowland forests showed steeper 
negative slopes of backscattering coefficients during the early-wet season stage and slightly less steep positive 
slopes during the late-wet season stage. This may be associated with the flooding pattern in this area; flooding 
involved rapid changes in surface conditions, but gradual recovery as the water receded.  

4.2. Land cover variation with respect to water level 

We calculated and plotted the areal variation of vegetation and flooded vegetation types and water-covered 
surfaces Fig. 3b. with error bars of ± 1 standard deviation. The vegetation area was reduced to 20.9% of the total 
vegetation area when the water level reached its peak (0.48 m amsl), which indicates that about 15.1% of the 
total study area was affected by flooding.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (k) (h) 

   
(i) (j) (a) 

Fig. 4. Land cover map of (a) 1997-12-21; (b) 1998-01-25; (c) 1998-03-01; (d) 1998-04-05; (e) 1998-05-10; (f) 1998-06-14; (g) 1998-07-19; 
(k) 1998-08-23; (h) 1998-09-27; (i) 1998-11-01; and (j) 1998-12-06 in the study area. 

For the vegetation area dominated the entire area whereas the flooded vegetation covered a smaller area. 
The maximum flooded vegetation area comprised about 37.8% of the total study area. In the crest flooding, the 
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minimum areal flooded vegetation was 23.6% of the total study area at a water level of 0.48 m amsl. This 
indicates that the flooded vegetation area (about 14.2% the total study area) was converted to vegetation area 
when the water level decreased.  

The total area of water surface was only 1.6% of the total study area at dry season. However, this increased 
18.7% of the total study area at wet season. The areal variation of vegetation was very sensitive to fluctuations 
in water level because of the low height of the grasses and agricultural tree. After crest flooding, areal flooded 
vegetation and areal vegetation were decreased rapidly meanwhile the area of water surface increased. This 
means that areal flooded vegetation and areal vegetation were transferred to area of water surface. 

These maps provide detailed views of each land cover class over time, thereby providing insight into the 
changes in all land cover classes during a flood pulse. Since the flooding starts from the water level above 0.3 m 
amsl, we examined the land cover at 0.3 m amsl. A land cover map at 0.3 m amsl within the flood development 
stage was generated by simple simulation using the DTM map, the land use map, and the water level record at 
0.3m. The land cover results extracted from ERS-2 SAR and DTM and land use map results at water level 0.3 m 
were generally similar, with differences ranging from 0 to 12.5% of the total land cover class area. The areal 
difference for vegetation was about 0.3% of the total land area. The differences, however, were particularly high 
for flooded vegetation, water surface about 3.8% and 1.2% of the total land cover area, respectively. There are 
several potential error sources in the simple estimation derived from the DTM and land use map. For instance, 
the elevation accuracy of DTM data is about 1 m and the height accuracy of vegetation is about 0.5 meters. Thus, 
the results derived from the DTM and land use map are not accurate for larger areas with abundant trees of 
various heights. Together, our results indicate that land cover variations that take water level into account can 
increase our understanding of flood dynamics and help manage human activity and floods in wetland areas. 

5. Conclusions 

In this study, we studied changes in land cover classes in the Tonle Sap floodplain using ERS-2 SAR data, 
and a land cover area variation were established as a water level change. The results indicate that backscattering 
coefficient changes measured for land cover classes between dry and wet seasons depended on location, 
characteristics of the vegetation, and water level changes.  

When we computed the area changes of vegetation type, we found that the area changes depended on the 
interaction between water level and vegetation height at various elevations. The total area of vegetation was the 
largest among the land cover classes at about 70.4% of the study area, and the effect of flooding on this area was 
strong. A backscattering coefficient change from -7.6 dB to -20.6 dB for vegetation in the flood development 
stage corresponded to an areal percentage change of vegetation about 15.1% of the total study area according to 
our calculation. The flooded vegetation area (about 14.2% of total study area) was converted to vegetation area 
when the water level decreased after the crest flooding. The computed results also revealed that a large portion 
of land cover classes (about 17.1% of total study area) was covered with water at the peak of flooding. When we 
compared results extracted from ERS-2 SAR data and those obtained from a DTM and land use map at 0.3 m 
amsl, we found an areal difference in land cover classes with a maximum of 3.8% in the flooded vegetation. It 
indicates that it is necessary to use SAR data for future flood management.  
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